Nematode-induced jejunal inflammation in the ferret causes long-term changes in excitatory neuromuscular responses.

نویسندگان

  • K Venkova
  • J M Palmer
  • B Greenwood-Van Meerveld
چکیده

Enteric infections in animals and humans have proven the link between mucosal inflammation and gastrointestinal motor dysfunction. The goal of the present investigation was to study the long-term effects of mucosal inflammation on the neuromuscular functions of the small intestine in a ferret model of primary Trichinella spiralis infection. Myeloperoxidase activity and isometric contractions of isolated jejunal muscles were studied on days 8, 30, and 60 postinfection (PI). The peak increase in myeloperoxidase activity seen on day 8 PI returned to normal levels by day 60 PI. Contractions of the longitudinal and circular muscles evoked by electrical field stimulation of enteric nerves on day 8 PI showed no difference when compared with uninfected controls. However, during this enteric phase of the infection, neurally mediated responses were characterized by a disturbance in the balance between cholinergic and nonadrenergic, noncholinergic (NANC) excitation with both a reduction of cholinergic and a reciprocal enhancement of NANC neurotransmission. On days 30 and 60 PI the amplitude of neurally mediated responses and the balance between cholinergic and NANC excitation were restored in the circular but not in the longitudinal muscle. In addition, there were changes in the effector function involving smooth muscle hyperresponsiveness to high K+ or carbachol on days 8, 30, and 60 PI. However, a significant reduction in EC50 for carbachol was found only on day 60 PI. The results demonstrate that T. spiralis infection results in alterations of muscle contractility and enteric neurotransmission that persist after the resolution of mucosal inflammation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effects of long-term administration of Ziziphus jujuba fruit extract on cardiovascular responses in L-NAME hypertensive rats

Objective: Ziziphus jujuba stimulates the release of nitric oxide (NO).  Because NO is involved in cardiovascular regulations, in this study the effects of hydroalcoholic extract of Z. jujuba on cardiovascular responses in acute NG-nitro-L-arginine methyl ester (L-NAME) hypertensive rats were evaluated. Materials and Methods: Rats were divided into 6 group (n=6): 1) saline, 2) L-NAME received (...

متن کامل

Functional alterations in jejunal myenteric neurons during inflammation in nematode-infected guinea pigs.

Intracellular recordings of jejunal myenteric neurons with an afterspike hyperpolarization (AH) from Trichinella spiralis-infected animals showed enhanced excitability on days 3, 6, and 10postinfection (PI) compared with uninfected animals. Lower membrane potential, increased membrane input resistance, decreased threshold for action potential discharge, decreased AH amplitude and duration, and ...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 1999